Modeling Urban Behavior by Mining Geotagged Social Data
نویسندگان
چکیده
منابع مشابه
modeling loss data by phase-type distribution
بیمه گران همیشه بابت خسارات بیمه نامه های تحت پوشش خود نگران بوده و روش هایی را جستجو می کنند که بتوانند داده های خسارات گذشته را با هدف اتخاذ یک تصمیم بهینه مدل بندی نمایند. در این پژوهش توزیع های فیزتایپ در مدل بندی داده های خسارات معرفی شده که شامل استنباط آماری مربوطه و استفاده از الگوریتم em در برآورد پارامترهای توزیع است. در پایان امکان استفاده از این توزیع در مدل بندی داده های گروه بندی ...
Extracting Patterns of Urban Activity from Geotagged Social Data
Data generated on location-based social networks provide rich information on the whereabouts of urban dwellers. Specifically, such data reveal who spends time where, when, and on what type of activity (e.g., shopping at a mall, or dining at a restaurant). That information can, in turn, be used to describe city regions in terms of activity that takes place therein. For example, the data might re...
متن کاملMining Social and Urban Big Data
In recent years, with the rapid development of positioning technologies, online social networks, sensors and smart devices, large scale human behavioral data are now readily available. The growing availability of such behavioral data provides us unprecedented opportunities to gain more in depth understanding of users in both the physical world and cyber world, especially in online social networ...
متن کاملA context-aware personalized travel recommendation system based on geotagged social media data mining
A context-aware personalized travel recommendation system based on geotagged social media data mining Abdul Majid a , Ling Chen a , Gencai Chen a , Hamid Turab Mirza a , Ibrar Hussain a & John Woodward b a College of Computer Science, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, PR China b School of Computer Science, The University of Nottingham Ningbo China, Ningbo, 315100, PR China P...
متن کاملMining Context-Aware Significant Travel Sequences from Geotagged Social Media
Geotagged photos of users on social media site, i.e., Flickr provide plentiful location-based data, which has been exploited for location-based services, such as mapping geotags to places (Kennedy et al. 2007), and recommendation of personalized landmarks (Shi et al. 2011). As users’ preferences to visit a location or multiple locations in a certain sequence could be affected by their current t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Big Data
سال: 2017
ISSN: 2332-7790
DOI: 10.1109/tbdata.2016.2628398